當前位置:蘇州科技局 > 政務公開 > 國内外科技動态

我首次建立金屬中納米孔洞俘獲氫定量預測模型

發布日期:2019-07-18 09:01:06 來源:科技日報
  記者從中科院合肥研究院固體物理研究所獲悉,該所劉長松課題組吳學邦與麥吉爾大學宋俊合作,首次建立了體心立方金屬中納米孔洞氫俘獲和聚集起泡的定量預測模型,為理解氫緻損傷,以及設計新型抗氫緻損傷材料提供了可靠的理論基礎和工具。該成果日前發表在《自然·材料》雜志上。
  氫極易鑽進金屬材料的内部,導緻材料損傷。例如,在磁約束核聚變反應堆的核心部位,燃料氫同位素極易滲透進保護其他部件的鎢金屬裝甲,與中子輻照産生的納米孔洞結合,從而形成氫氣泡并産生裂紋,最終對材料的結構和服役性能造成緻命損傷,危及聚變裝置的安全。
  為攻克上述難題,研究人員采用基于密度泛函理論的模拟方法,在原子尺度上獲得了精确的氫與納米孔洞相互作用數據,并結合多尺度模拟方法,進行宏觀尺度模拟,從而與實驗結果進行對比驗證。針對氫在不光滑納米孔洞内壁上吸附問題,他們以體心立方金屬鎢為例,通過分析氫的運動軌迹,發現氫總是以單原子形式有次序地吸附在一些特定位置上,氫在複雜的孔洞内壁吸附規律可概括為五類吸附位點及相應的五個吸附能級,從而準确描述氫在不光滑納米孔洞内壁上的吸附特性。
  基于上述規律,研究人員建立了一個普适的定量模型:内壁上氫的能量取決于吸附點的類型以及内壁上氫的面密度,而芯部氫的能量則由氫的體密度決定。由該模型預測得到的結構和氫俘獲能,與模拟計算結果高度一緻。
  這項研究建立了氫與納米孔洞相互作用的定量物理模型,為理解氫緻金屬材料損傷提供了尋求已久的關鍵認知。這些金屬材料不僅會被用在未來聚變堆第一壁裝甲中,助力可控核聚變的實現,也會在氫能源汽車以及航空航天等領域中發揮至關重要的作用。
http://m.juhua774367.cn|http://wap.juhua774367.cn|http://www.juhua774367.cn||http://juhua774367.cn